diff options
| author | Taylan Kammer <taylan.kammer@gmail.com> | 2025-02-10 20:20:26 +0100 |
|---|---|---|
| committer | Taylan Kammer <taylan.kammer@gmail.com> | 2025-02-15 18:38:28 +0100 |
| commit | dd3d8f9d768479df36e51d402adf55afad1aff07 (patch) | |
| tree | 21b11a361ca080a2d130f33fe435b4ac284731be /src/root.zig | |
| parent | 831dc694c404826e9a1bf07788e10b9ac3d9cb2d (diff) | |
update
Diffstat (limited to 'src/root.zig')
| -rw-r--r-- | src/root.zig | 191 |
1 files changed, 191 insertions, 0 deletions
diff --git a/src/root.zig b/src/root.zig new file mode 100644 index 0000000..05ad381 --- /dev/null +++ b/src/root.zig @@ -0,0 +1,191 @@ +//! By convention, root.zig is the root source file when making a library. If +//! you are making an executable, the convention is to delete this file and +//! start with main.zig instead. +const std = @import("std"); +const builtin = @import("builtin"); +const testing = std.testing; + +// Read the following article to understand the NaN-packing strategy: +// +// https://tkammer.de/zisp/notes/nan.html +// +// Note: Packed structs are least-to-most significant, so the order of fields +// must be reversed relative to a typical big-endian illustration of the bit +// patterns of IEEE 754 double-precision floating point numbers. + +const Value = packed union { + double: f64, + nan: packed struct { + rest: u51, + quiet: u1, + exp: u11, + sign: u1, + }, + int: packed struct { + code: u51, + neg: bool, + exp: u11, + is_int: bool, + }, + pointer: packed struct { + value: u48, + type: u3, + _zo: u1, + _qnan: u12, + }, +}; + +// Helpers + +inline fn zisp_dump(v: Value) void { + std.debug.dumpHex(std.mem.asBytes(&v)); +} + +///! Checks for any IEEE 754 NaN. +inline fn zisp_is_nan(v: Value) bool { + return v.nan.exp == std.math.maxInt(u11); +} + +///! Checks for a Zisp value packed into a NaN. +inline fn zisp_is_packed(v: Value) bool { + return zisp_is_nan(v) and v.nan.rest != 0; +} + +///! Checks for a regular double including infinity or canonical NaN +inline fn zisp_is_double(v: Value) bool { + return !zisp_is_packed(v); +} + +inline fn zisp_assert_double(v: Value) void { + if (!zisp_is_double(v)) { + zisp_dump(v); + @panic("not double"); + } +} + +inline fn zisp_is_int(v: Value) bool { + return zisp_is_packed(v) and v.int.is_int; +} + +inline fn zisp_assert_int(v: Value) void { + if (!zisp_is_int(v)) { + zisp_dump(v); + @panic("not int"); + } +} + +// See detailed NaN packing docs for why the +/- 1. +const zisp_int_min = std.math.minInt(i52) + 1; +const zisp_int_max = std.math.maxInt(i52) - 1; + +inline fn zisp_assert_int_range(int: i64) void { + if (int < zisp_int_min) { + std.debug.print("int to pack is too small: {}", .{int}); + @panic("int to pack is too small"); + } + if (int > zisp_int_max) { + std.debug.print("int to pack is too large: {}", .{int}); + @panic("int to pack is too large"); + } +} + +inline fn zisp_int_pack_neg(int: i64) Value { + return @bitCast(int); +} + +inline fn zisp_int_unpack_neg(v: Value) i64 { + return @bitCast(v); +} + +const zisp_int_pos_mask: u64 = 0xfff7ffffffffffff; + +inline fn zisp_int_pack_pos(int: i64) Value { + const uint: u64 = @bitCast(int); + return @bitCast(uint ^ zisp_int_pos_mask); +} + +inline fn zisp_int_unpack_pos(v: Value) i64 { + const uint: u64 = @bitCast(v); + return @bitCast(uint ^ zisp_int_pos_mask); +} + +inline fn zisp_int_pack(int: i64) Value { + zisp_assert_int_range(int); + if (int < 0) { + return zisp_int_pack_neg(int); + } else { + return zisp_int_pack_pos(int); + } +} + +inline fn zisp_int_unpack(v: Value) i64 { + zisp_assert_int(v); + if (v.int.neg) { + return zisp_int_unpack_neg(v); + } else { + return zisp_int_unpack_pos(v); + } +} + +// Doubles + +pub fn zisp_double(d: f64) Value { + return @bitCast(d); +} + +// pub fn zisp_double_p(v: Value) Value { +// return zisp_bool(zisp_is_double(v)); +// } + +pub fn zisp_double_get(v: Value) f64 { + zisp_assert_double(v); + return v.double; +} + +pub fn zisp_double_add(v1: Value, v2: Value) Value { + const d1 = zisp_double_get(v1); + const d2 = zisp_double_get(v2); + return zisp_double(d1 + d2); +} + +// Ints + +pub fn zisp_int(int: i64) Value { + return zisp_int_pack(int); +} + +// pub fn zisp_int_p(v: Value) Value { +// return zisp_bool(zisp_is_int(v)); +// } + +pub fn zisp_int_get(v: Value) i64 { + return zisp_int_unpack(v); +} + +pub fn zisp_int_add(v1: Value, v2: Value) Value { + const int1 = zisp_int_get(v1); + const int2 = zisp_int_get(v2); + return zisp_int(int1 + int2); +} + +// Tests + +test "double add functionality" { + const d1: f64 = 0.123456789; + const d2: f64 = -0.987654321; + const v1 = zisp_double(d1); + const v2 = zisp_double(d2); + const v3 = zisp_double_add(v1, v2); + const result = zisp_double_get(v3); + try std.testing.expect(result == d1 + d2); +} + +test "int add functionality" { + const int1: i64 = 123456789; + const int2: i64 = -987654321; + const v1 = zisp_int(int1); + const v2 = zisp_int(int2); + const v3 = zisp_int_add(v1, v2); + const result = zisp_int_get(v3); + try std.testing.expect(result == int1 + int2); +} |
